
Bitwise Operator
by Matt Slot

This month we will be discussing two parts of the applications interface: menus and windows. In
addition to an overview of these objects, updated source code (found at 
http://www.ambrosiasw.com/~fprefect/bitwise/issue4/bitwise.c)illustrates a working implementation. 
As always, we'll be be throwing around many Toolbox utility functions. Remember that the 
Inside Macintosh books (or a copy of THINK Reference) are your friends -- take the time to look
up those things that confuse you.

As a preface to the expanded code, I'd like to briefly discuss the convention for function names 
that it uses. Functions can be divided into 4 categories: actions, handlers, accessors, and utilities. 
Action functions typically perform a specific action, such as initializing the program or creating 
a window. You can identify an action function because its name begins with DoXXX().

Handler functions are called in response to a user or system event, to get more information and 
the call the appropriate action routines in response. All handler functions are of the form 
HandleXXX(). Accessor functions are used to insert or extract data from an interface, and 
typically use the GetXXX() or SetXXX() conventions. Finally, miscellaneous utility functions 
that don't fit into any of the above categories tend to have simple descriptive names with no 
clever prefix.

User Interface: Menus

The first thing we need to do is create some menus and place them into the menubar when the 
application starts up. DoInitialize() invokes CreateMenus() after the Toolbox has been initialized 
to do this. This function uses the menu and item constants to create each menu, fill them with 
items, and insert them one at a time into the menu bar. After each menu has been inserted, the 
function forces the menu bar to redraw with its new contents.

Most items have both text and a "command-key shortcut" to help the user select items from the 
keyboard. Once the menu is created, each item is inserted and the command key assigned. The 
magic "\p(-" is used to insert a disabled separator item. Be sure to avoid marks of punctuation in 
menu items (other than periods or ellipses), because functions like AppendMenu() may interpret 
them in unexpected ways.

The Apple menu is a special case, because it needs to be filled with a list of installed Desk 
Accessories -- or more
appropriately under System 7.0 and later, list of the user's Apple Menu Items. As illustrated in the
sample, this is performed by the function AppendResMenu() with the indicated parameters (for 
historic reasons). When an item is chosen from the Apple menu, the text of that item must be 



passed to the Toolbox routine OpenDeskAcc().

In the upcoming sections we'll discuss how the application interacts with the user via Toolbox 
functions, and how it handles the sample commands we've made available. Finally, during the 
application cleanup most programs don't bother removing and release installed menus -- since 
the application's memory is entirely recycled.

User Interface: Windows

The most important elements of a user interface are the windows. These are usually created and 
disposed by the user, either directly or indirectly. In the sample application, a window is created 
in response to the New item from the File menu using the NewWindow() Toolbox function. The 
code illustrates how to specify different attributes for the new window, and even uses the global 
gWindowOffset to stack subsequent windows nicely.

When the user no longer wishes to use the window, he can either select Close from the File menu
or click in the "go away" box in the window's title bar. The application also needs to close each 
window just before quitting, so that it can offer the user a chance to save any open documents. In
each case, for now, we simply locate the appropriate window call DisposeWindow().

Between creating and deletion, the application may display many windows on the screen. 
Normally a programmer likes to track every allocated structure manually (such as in a global or 
linked list), but that's not necessary under the MacOS. The Window Manager provides several 
ways to identify the window that requires processing, and offers a way for the application to 
attach private data to a given window (such as preferences, text, etc.).

If the application must iterate the windows, it can use the FrontWindow() call to find the 
frontmost visible window and then use the nextWindow field of the WindowRecord to continue 
down the linked list. By typecasting a pointer into the window reference constant using 
SetWRefCon() and GetWRefCon(), the application can store a private data structure that 
identifies the purpose and contents of a given window.

Interacting with the User

Now that we have a few user interface elements onscreen, we need to let the user play with them.
As discussed in the previous column, the application event loop waits for user events and then 
dispatches them to be handled. In this column, we begin to fill out the handler code as it relates 
to windows and menus.

The most first event that an application may receive is a mouseDown event, however a click has 
many different semantics. The program must call the Toolbox function FindWindow() to 
determine which onscreen object was clicked, and then further use that information to resolve the
user event. For example part code inDesk indicates that the user clicked outside of your 
application and there is no action necessary.

When the user clicks in the menu bar, call the Toolbox function MenuSelect() to track the mouse 



at it passes over menus then return which menu and item was picked. In the sample application, 
we extract the individual menu and item IDs and pass them to HandleMenuSelection() which 
takes the appropriate action.

When the user clicks in a window, the application has to react to the clicked window part by 
either activating, dragging, or resizing the window. Clicks in the content area are often used to 
select text or activate controls, but the sample source simply displays a graphic effect for the time
being.

Note that clicks in the window's go away, or close, box and the zoom box involve an extra step. 
The user may click inside the part, but then change his mind and drag out before releasing. Use 
TrackGoAway() or TrackBox() to wait for the user to release the mouse before performing the 
indicated action. Its also important to remember to set the window's drawing port using GetPort()
and SetPort() before calling ZoomWindow() or the application will crash.

The next user event that the application may receive is a keypress. If the user has pressed a key 
while the command modifier key is pressed, we must call MenuKey() to determine which menu 
item was selected and pass that information to the application's HandleMenuSelection() function.
Otherwise normal keyDowns, and all autoKey events are passed to our HandleKeydown() 
function -- which currently just flashes the frontmost window to show that it works.

Finally, the application may receive events in response to changes in the window ordering or 
location on the screen. The pointer to the window is placed in the event record's message (and 
must be typecasted to extract), to indicate which object to handle.

In response to an updateEvt, the application must inform the Toolbox that it will be redrawing 
the contents of the window by wrapping the drawing operations with the functions 
BeginUpdate() and EndUpdate(). For now, we simply draw the grow icon and fill the window 
with a harmless pattern.

In response to an activateEvt, the application would normally adjust the focus of objects in the 
window (like text or lists) by dimming or enabling them. Until the sample windows actually 
contain something, we don't bother doing anything.

Overall, the process of interacting with the user is pretty simple if tedious. Each possible event, 
each possible item that can be clicked must be anticipated and handled. Many window parts, as 
well as controls, lists, and text fields have functions which help determine where and how to 
handle the user's actions, and another set of functions to actually perform them. The application's
responsibility is to receive the events and dispatch them.

Matt Slot, Bitwise Operator

   


